FORMULAS

Formulas - Electrical

	VOLTS :
Amps x Ohms	Watts
Amps x Omis	Amne

√Watts x Ohms

	AMPS =
Volts	Watts

Volts Watts
Ohms Volts

Watts \Ohms

WATTS =

Volts x Amps

Amps² x Ohms

Volts² Ohms

OHMS =

Volts Amps Volts² Watts

Power Factor =
$$\frac{KW}{KVA}$$
 = Cos Θ

Single Phase

Three Phase

$$KW = \frac{\sqrt{V \times A \times PF}}{1000}$$

$$\frac{\sqrt{3} \times V \times A \times PF}{1000}$$

$$KVA = \frac{V \times A}{1000}$$

$$\frac{\sqrt{3} \times V \times A}{1000}$$

$$AMPS = \frac{KVA \times 1000}{V}$$

$$\frac{KVA \times 1000}{\sqrt{3} \times V}$$

$$\sqrt{3} = 1.73$$

Approx. Motor KVA = Motor Horsepower (At Full Load)

Capacitors Connected In Parallel $C_1 + C_2 + C_3 = C$ Total

Capacitors Connected In Series

$$\frac{C_1 \times C_2}{C_1 + C_2} = C \text{ Total}$$

More Than Two

$$\frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_2}} = C Total$$

VOLTAGE UNBALANCE

% Voltage Unbalance =

100 x Max. Voltage Deviation From Average Voltage
Average Voltage

BOOST TRANS.:

Rating Plate F.L.A. x Rating Plate VOLTS = KVA

$$\frac{\textit{Rating Plate VOLTS}}{\textit{Rating Plate VOLTS}} = \textit{FACTOR}$$

$$\frac{KVA}{FACTOR}$$
 = Trans. KVA Rating

$$V_1$$
 Rated Volts V_2 = Measured Volts

Typical Ampere Wire Ratings*

AWG	PPER CONDUCT	ATING OF CONI	
MCM	60°C*	75°C*	90°C*
14	15	15	25°
12	20	20	30°
10	30	30	40°
8	40	45	50
6	55	65	70
4	70	85	90
3	80	100	105
2	95	115	120
1	110	130	140
1/0	125	150	155
2/0	145	175	185
3/0	165	200	210
4/0	195	230	235
250	215	255	270
300	240	285	300
350	260	310	325
400	280	335	360
500	320	380	405
600	355	420	455
700	385	460	490
750	400	475	500
800	410	490	515
900	435	520	555
1000	455	545	585
1250 1500 1750	495 520 545 560	590 625 650 665	645 700 735 775

Summary only, refer to NEC 310-16, -17, -18, -19 (and others) for limitations.

Typical Electric Wire Size

	SINGL	E PH.	THREE PH.				
MOTOR HP	115 VOLT	230 VOLT	230 VOLT	460 VOLT			
1-1/3	14	14					
1/2	14	14	14	14			
3/4	12	14	14	14			
1	12	14	14	14			
1-1/2	10	14	14	14			
2		12	14	14			
3		10	14	14			
5			12	14			
7-1/2			10	14			
10			8	12			

From Standards of the National Board of Fire Underwriters.

Correction Table For Watts - Amperes - Volts

WATTS	VOLTAGE (C - Single Phase)									
WAIIS	120	240	277							
	AMPERES									
500	4.2	2.4	2.1	1.8						
1000	8.3	4.8	4.2	3.6						
1500	12.5	7.2	6.3	5.4						
2000	16.7	9.6	8.3	7.2						
2500	20.9	12.0	10.4	9.0						
3000	25.0	14.4	12.5	10.8						
3500	29.2	16.8	14.6	12.6						

FORMULAS

Electrical Units

Source: United States Bureau of Standards

The watt is the unit expressing electrical power as horsepower (hp) in mechanics; it is equal to the product of the volts (pressure) times amperes (rate of flow). Thus, 2 volts times 2 amperes would equal 4 watts in a direct current circuit. Electrical energy is sold at so much per watt hour or more generally at a given amount per kilowatt hour - which means 1,000 watt hours. This may represent 1 watt for 1,000 hours or 1,000 watts for one hour. 746 watts are equal to one horsepower or inversely 1 kilowatt (kw) is equal to about 1-1/2 horsepower.

Horsepower represents the power required to lift a weight of 33,000 lbs. 1 foot in 1 minute or 550 lbs. 1 foot in 1 second.

The ohm is the unit of electrical resistance and represents the physical property of a conductor which offers a resistance to the flow of electricity, permitting just 1 ampere to flow at 1 volt of pressure.

Electric Heating Correction Factor

Capacity Correction Factor

For correction of unit output, multiply the correction factor times the KW rating at 240 volts.

$$TR = \frac{3160 \times KW \times VC}{CFM}$$
 or $CFM = \frac{3160 \times KW \times VC}{TR}$

Where:

TR = temp rise, F°
3160 = constant

KW = KW rating above

CFM = air flow at specified conditions VC = heating correction factor

Formulas - Cooling Capacity *

Total BTUH = CFM x (THC₁ - TCH₂) x 4.5 THC = Total Heat Content or Enthalpy (BTU per lb. of air)

Sensible BTUH = CFM x (T₁ - T₂) x 1.08 T = Dry Bulb Temp (Degrees Fahrenheit)

Latent BTUH = CFM x (W₁ - W₂) x .683 W = Specific Humidity (Grains H₂O per lb. of air (See Psychrometric Chart)

* Based on standard air at 13.3 cubic feet per lb.

Formulas - Heating Capacity*

BTUH = CFM x 1.08 X Rise

$$Cfm = \frac{BTUH\ Output}{108\ x\ Rise}$$

$$Rise = \frac{BTUH\ Output}{108\ x\ Cfm}$$

$$CFM = \frac{BTU / Hr. Input}{135 \times \Delta T}$$
 Indoor Furnace 80%

$$CFM = \frac{BTU / Hr. Input}{144 \times \Delta T}$$
 Outdoor Furnace 75%

$$CFM = \frac{KW \times 3415}{108 \times \Delta T}$$
 Electric Heat 92%

Formulas - General Subjects

Area of Circle =
$$3.14 \times R^2$$

Circumference of Circle = 3.14 x Dia.

Area of Sphere = $3.14 \times (Dia.)^2$

Volume of Sphere = $0.524 \times (Dia.)^3$

Horsepower Conversion Chart

To convert decimal horsepower to commonly available fractional horsepower motors.

DECIMAL HORSEPOWER																	
0.010	0.014	0.017	0.020	0.025	0.033	00.40	0.050	0.067	0.083	0.100	0.125	0.167	0.250	0.333	0.500	0.750	1.000
FRACTIONAL HORSEPOWER																	
1/100	1/70	1/60	1/50	1/40	1/30	1/25	1/20	1/15	1/12	1/10	1/8	1/6	1/4	1/3	1/2	3/4	1

^{*} Based on standard air at 13.3 cubic feet per lb.